
Data Types
Data types (or sometimes just “types”) provide a means to classify data so that the REPL or
ECRD environment can properly interpret the data. A data type provides the connection
between the binary format in which all data is ultimately represented in a digital computer
(whether that be in main memory, a register, on disk, or in transit across a network) and the
representation of that data for humans.

Let’s consider a few bytes in memory:

The byte at memory location 0x07AE might represent the integer value 65. It also might
represent the ASCII (a means of encoding characters into a byte) character ‘A’. The byte at
memory location 0x07AF might represent the integer 88. It also might represent the ASCII
character ‘X’. Or, perhaps, the two bytes form a single word representing a “half precision”
floating point number. Another possibility is that the two bytes form a string beginning with the
letters “AX”. Either may also be a Boolean value or part of an RGB (Red-Green-Blue)
description of a pixel. Without context, the binary digits are meaningless. It is the data type in
conjunction with the binary digits that provide meaning. Another way of thinking about this
is that a data type constrains the set of values in the mapping from binary digits to a
meaningful, human representation to a (relatively) small set of discrete elements, where each
element is of the same type as all other members of the set. (See diagram on next page.) 

07AE: 0 1 0 0 0 0 0 1

07AF: 0 1 0 1 1 0 0 0

L-Values and R-Values
An L-Value refers to an object that persists beyond a single expression, that is, it is addressble.
The name comes from the typical manner in which assignment statements are written in most
programming languages, with the variable receiving the value on the left:

 x = 5 + 4

In this case, the variable “x” is an L-value which is being assigned the value 5+4, or 9. “x”
refers to a location in memory which will contain the value 9, and that location will continue to
persist after execution of this statement completes. For example, the next statement may
again refer to “x”, as in:

 print(x)

Note that in most computer languages, the variable to be assigned is on the left of the
assignment operator. In these cases, it would not be possible to assign to a variable on the
right, as in:

 5 + 4 = x

An R-Value refers to some object which does not persist after execution of the statement, that
is, it is a temporary value. Think back to our original statement:

 x = 5 + 4

In this case, 5+4 is an R-Value. It isn’t possible to assign a value (that is, there is no persistent
storage associated with) 5+4.

Constants
A Constant is a value which will not be altered as a program executes. A Named Constant is
a constant associated with an identifier which can subsequently be used to refer to the value of
the constant. In the below examples, pi, e, and g0 are all named constants:

 let pi = 3.14159265358979323846

 let e = 2.718281828459

 let g0 = 9.80665 (in m/s2)

Named Constants assist programmers to add clarity to their code. It is clearer to both the
programmer herself and others that later read the code that pi refers specifically to π and not
another number that happens to start with 3.14. It also helps to eliminate mistakes due to
repeatedly typing or copying and pasting a constant. Further, if a mistake is discovered in a
named constant it is necessary only to correct the definition of the named constant in a single
location rather than attempt to search for the value throughout all of the source code. Finally,
declaring Named Constants help to protect the programmer by enabling compile-time checks.

While Named Constants are helpful for programmers they are also helpful to both REPL and
ECRD environments as well by enabling optimizations that otherwise wouldn’t be available.

Constants which are not named but rather expressed directly in the source code are called
Literal Constants. For example: 145.6, “apple”, 185, -123, and false are all examples of literal
constants.

Operators
In programming, Operators provide us with the ability to write many expressions in a manner
generally familiar to us from algebra. Operators can be grouped by arity, that is, the number of

operands on which the operator will function. For example, the expression 4+5 makes use of
a binary operator (addition) which takes two operands, in this case a 4 and a 5. (An arity of one
is often called unary while an arity of two is often called binary.)

Some common operators are listed in the table below:

Some languages also support Compound Assignment operators, that is, they perform an
operation on an L-Value and then store the result in the same L-Value. For example, the
statements:

 var x = 9
 x += 2

Name Symbol (Swift) Arity Type

Assignment = 2 General

Unary Plus (Positive) + 1 Arithmetic

Unary Minus (Negative) - 1 Arithmetic

Addition + 2 Arithmetic

Subtraction - 2 Arithmetic

Multiplication * 2 Arithmetic

Division / 2 Arithmetic

Remainder % 2 Arithmetic

Logical NOT ! 1 Boolean

Logical AND && 2 Boolean

Logical OR || 2 Boolean

Equal to == 2 Comparison

Not equal to != 2 Comparison

Greater than > 2 Comparison

Greater than or equal to >= 2 Comparison

Less than < 2 Comparison

Less than or equal to <= 2 Comparison

assign the integer value of 9 to “x”, and then increment “x” by 2, resulting in a new value for “x”
of 11. This is exactly equivalent to:

 var x = 9
 x = x + 2

